f(0) = 0 f'(0) = 1 $f^{(n+1)}(0) = -n \cdot f^{(n)}(0) \text{ for all } n \ge 1$

- 6. A function f has derivatives of all orders for -1 < x < 1. The derivatives of f satisfy the conditions above. The Maclaurin series for f converges to f(x) for |x| < 1.
 - (a) Show that the first four nonzero terms of the Maclaurin series for f are $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4}$, and write the

general term of the Maclaurin series for f.

- (b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at x = 1. Explain your reasoning.
- (c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x) = \int_0^x f(t) dt$.
- (d) Let $P_n\left(\frac{1}{2}\right)$ represent the *n*th-degree Taylor polynomial for g about x = 0 evaluated at $x = \frac{1}{2}$, where g is

the function defined in part (c). Use the alternating series error bound to show that

 $\left|P_4\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<\frac{1}{500}.$

STOP END OF EXAM