2017 AP ${ }^{\text {® }}$ CALCULUS BC FREE-RESPONSE QUESTIONS

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =1 \\
f^{(n+1)}(0) & =-n \cdot f^{(n)}(0) \text { for all } n \geq 1
\end{aligned}
$$

6. A function f has derivatives of all orders for $-1<x<1$. The derivatives of f satisfy the conditions above. The Maclaurin series for f converges to $f(x)$ for $|x|<1$.
(a) Show that the first four nonzero terms of the Maclaurin series for f are $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$, and write the general term of the Maclaurin series for f.
(b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at $x=1$. Explain your reasoning.
(c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x)=\int_{0}^{x} f(t) d t$.
(d) Let $P_{n}\left(\frac{1}{2}\right)$ represent the n th-degree Taylor polynomial for g about $x=0$ evaluated at $x=\frac{1}{2}$, where g is the function defined in part (c). Use the alternating series error bound to show that
$\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<\frac{1}{500}$.

STOP
 END OF EXAM

